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INTRODUCTION

When a set of interaction data based on Flanders'
Interaction Category Systcm, FLICS1 is recorded in a
matrix, the purnose is to look at paired sequences of
observation (recorded in the '"cells" of the matrix).

The ten catesories are given in Table 1.

Flanders [1] discussed the interpretation of various
sections of the matrix which are combinations of the
paired sequences.

The concept of an interaction analysis matrix 1s

closely related to a one-cependent Markoff cnain (also

simply called a Markoff chain). Many researchers are
analyzing differences between two or more interaction
matrices with the use of a criterion based on a Markoff
chain model.

Fellier's [2, p. 340] definition will be paraphrased
here and subsequentlv applied to interaction analysis
data.

A Markoff chain is a sequence of trials with possible

outcomes E,, L in which the probabilities of sample

2,009,
gequences are defined by

P{E, 5 E. 5,.¢+,E, } = a, P, . P. . ++:P. . P .
Jo 1 Ih 19 95719172 Tno29ne1 Tn-1'n

(e

1

. TCS is an acrcnym adopted by the author, to refer
specifically to I'landers' ten~-category system of record-
ing verbal behavior, in a sequence, as they occur in a
classroom--the coding taking place at three-second inter-
vals; the data arec used for interaction analysis.
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TABLE 1
CATEGORIES FOR INTERACTION ANALYSIS

TEACHER TALK

INDIRECT INFLUENCE

Accepts Feeling: accepts and clarifies the feeling
tone of the students in a nonthreatening manner.
Feelings may be positive or negative. Predicting
or recalling feelings are included.

Praises or Encourages: praises or encourages stu-
dent action or bekavior. Jokes that release ten-
sion, not at the expense of ancher individual,
nodding head or saying, "um hm?" or "go on" are in-
cluded.

Accepts or Uses Ideas of Student: clarifying,
building, or developing ideas suggested by a stu-
dent. As a teacher brings more of his own ideas
into play, shift to category five.

Asks Questions: asking a question about content or
procedure with the intent that a student answer.

DIRECT INFLUENCE

Lecturing: giving facts or opinions about content
or procedure; expressing his own ideas, asking
rhetorical questions,

Giving Directions: directions, commands, or orders
to which a student is expected to comply.

Criticizing or Justifying Authority: statements
intended to change student behavior from non-
acceptable to acceptable pattern; bawling someone
out; stating why the teacher is doing what he is
doing; extreme self-reference.

STUDENT TALK

Student Talk--Response: a student makes a pre-
dictable response to teacher. Teacher initiates
the contact or solicits student statement and sets
limits to what the student says.

Student Talk~--Initiation: talk by students which
they initiate. Unpredictable statements in re-
sponse to teacher. Shift from 8 to 9 as student
introduces own ideas,

10.

Silence or Confusion: pauses, short periods of

Stmagmpe

sllence and pceriods of confusion in which communi-
cation cannot be understood by the observer.

;3 
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in terms of an initial probability distribution ay
for the states I, at tire 0 and fixed conditional
probabilities Pay of E given that Ej has ¢cocurred

at the preceding trial.

In interaction analysis this definition means

essentially that anywhere in the interaction sequence,

the probability that category (state) j will occur
depends only on the preceding category i, and not on
any other previous categories in the sequence. As an
example, the probability that category nine (student
talk--initiation) occurs in a classroom depends only
on what occurred immediately before the nine. Lecok-
ing at Table 1, one may guess that a nine is more
likely (has a greater probability) to oceur, if the
preceding category is a three (accepting ideas of
student) than if the preceding is a five.

Cne approach to the problem of analyzing class-
roonm interaction begins bv assuming that the sequence
cf observations is-a one-dependent Markoff Chain.

The catepories are the "outcomes," El’EQ""’Elo in
the definition. The initial probability distribution
a, is the probability of initial cccurrence of any
of the 10 categrories. In a classroom, however, it is

logical to assume that silence (or confusion) is

always the initial state:; this makes &, in the defini-

tion equal to one for interaction analysis data.

R B



"

The conditional probability pjk is the probability
of occurrcnce of catesory k, given that j is the
preceding category.

Many researchers arc analyzing differences be-
tween two or more matrices for statistical signifi-
cance by applying Darwin's [3, p. 413]. Assunming a
Merkoff chain for interaction data, Darwin considered

testing the nypothesis that t sets? of values Py

(Pij unknown, and i,j = 1,...,5, where s equals the
number of categoriés) are equal; that is, two or nore
matrices have the same pij for a given i and i. The
data to which this refers are t matrices with long

sequences. The Likeliheood Ratio eriterieon to test

the hypothesis is [3, p. 413]

2[Zn, .
i

Jhlog Rep In, , log D,y " In,. + In, .log n, ]

jh i.h h ij. i.

(1)

digtributed as chi square with i, = 1,...s, h = 1,...,t,
and s(t=1) (s-1) degrees of freedom. This criterion
when applied to interaction data, was giving results
which were too significant; that is, it was toco

sensitive to slight differcnces between scts of inter-

2Yor those who rcefer to Darwin [3], the notation t
is used instead of r, to avoid confusion with the use
of r wvhich dcnotes the order of a Markoff chain.
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action data. The objectives in this inquiry were:

1. to test the order of dependence
of the interaction chain and,

2. on the assumption of a one~dependent
Markoff chain,

a. to estimate empirically the
power of Darwin's critcrion
as applied to two composite
sequences, and

b. to arrive at an application
of Darwin's c¢riterion, which

will reflect educational sig-
nificance.

This paper has two sections. 1In Séctica I
Hoel's [4] test of order of a Markoff chain will be
discussed. The test showed that a two-dependent
(Order two) model is = better fit to interaction data
than the one~dependent model (Order one)--a model
that is assumed when researchers use Darwin's criterion.
Hence, a Likelihood Ratio Criterion (LRC) for a two-
dependent Markoff chain will also be presented.

In Section II the author will discuss possible
adjustments of Darwin's LRC, if the researcher wishes
to analyze data on a one-dependent chain assumption.

In order to do this, a speccific alternative

hypothesis that two interaction sequences are not

equal will be used to calculate the power of Darwin's

criterion, given such inequality. That is, it will



be shown that, given two matrices which are not equal

only by some chance and not due to differences in class-

room interaction, Darwin's LRC will “reject! the null
hypothesis of equality 100% of the time, when applied
to 500 pairs of matrices generated from the two matricec
From the generated pairs of matrices an empirical
distribution of Darwin's LRC will be derived in order
to determine a cut-off point for rejection of the null
hypothesis, such that rejection would have not only
statistical significance but also educational signifi-
cance.
Sections I and II may be read independently of

cach other.

Section I

Hoel's Test of Order of Dependence

The data used in this scction came from the data
bank of Flanders [5]. These were the sixth grade inter-
action sequences of 30 classrooms on five different

subject areas or activities.

Hypothesecs
In general notation, *he null hypotheses being

tested are expressed as follows:
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The transition probability, in an r-step

Pij.. k1
chain is equal to the trancition probability, p

.j..%kl:

in an (r -~ 1l)-step chain. Thus:

Hp: pij...kl.: Py, k1 i = 1,2,...,8.

In this paper we will let p.. = n,, /n,.
o plj...kl ij...kl ij...k.
be the Maximum Likelihood estimator of P, K1 If the
hypothesis is true, then the Likelihood Ratio criterion,

-2 loe A given below,® is, for large samples, distributed

as & XQ with s (s - 1)° degrees of freedom:
N il . ;
. ij...kl eJ ..okl
= -2 log A = 2 X n;. log g - log
i,...0,1 Feeekd i3, .k, Tk,
(2

In particular, the two null hypotheses tested to-

gether with their appropriate xz's were:

i=1,...,10

-

*The logarithms in the formulas throughout this paper
are all to the bacse e.

)



where -
N Nidk
’?ljk nij,
> 2 ni n "
X(gy = 2 B myy (108 gro— =l ~15 (2)
ik J 13- a3
2 i e .
(2) ho Pl] p._J ,
where
N 1’1.:l
Pes =
1
Iong,
2 ni. n .
X2, = 2% ni. (log ——> - log 1) . (4)
Sl) ij 17 ni. £ n..
The x2 subscript refers to the order of dependence r,

being tested against an (p - 1)-dependence, and, from what
follows, to say that xz(r) is not significant means that an
(p - l)-depencence is as good as an r-dependence assumption.
Thercfore, an (r - 1)-dependence would be preferable.

The basic idea behind Hoel's test is that a suffi-
ciently large r is chosen and testing is done successively,
decreasing r by one each time until a point is reached
when r is not significant and r ~ o is significant. This
is so becausc, if a chain is Markovian and the length of
the dependecnce is r + 1 (i.e., the chain is r step and the

dependence extends over T + 1 consecutive variables),
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x [ . N & ‘. - L - L d I \ﬁ :
(r)» X (p+1) © ° ° will not be significant in increasing
3 3] « Ta? 1 5] 2 2 2 . . * 0
o levels, thile X (r\_l) s X (p-2) °°° x(l) will bc 51gnlf.‘.-

cant, in decrcasing o levels.
The data did not reasonably allow a test bcyond » = 2.
The tost was made, not so muech to locate the order of

2

1

dependence as to have a basis of choice between an r
and an r = 1 assumption. The result of Hoel's tost would
be conclusive as to best fit only if xz(r) would not

turn out to be significant whilc Xz(r—l) was significant.
In this case it would mean that an (r-1l) dépendence éssump-
tion would suffice, while an (r-2) dependence wouldn't.

However, if both r and (r-1) dependence were significant,

the judgment as to whether an r-dependent model was a better

fit than an (r-1) dependence would be discretionary, after

the magnitude of difference in the o levels was observed.

Application of thc Test
Hoel's test was run on cach ef the matrices of thc
30 tcachers, as well as on each of the five activities.
The matrices of the activities were formed as follows:
Five teachers were chosen at random and their intcraction
data scparated into five sequences.(five matrices), one for
cach of five activitics in which they were obscrved. All

five matrices of cach activity were combined, yiclding one

matrix for cach activity. The fave activitics were

10
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adminiet: ative routince, language arts, social studics,

mathematics, and science.

Results of FKocl's Test

Table 2 summarizes the results of the x2 tests on
each teacher's matrix, and¢ Table 3 those on each of the
five activities. The z~column in Table 2 shows that all
the 30 X°'s were sisnificant with o < .001 for twenty nine
teachers and o < .01 for one teacher (Teacher 19). The
z-=column in Table 3 shows that for v = 2 the adminis-
trative routine and science chains (auiross the same five
teachers in the other activity chains) were not signifi-
cant. The results on theso two activities (administra-
tive routine and scicnee) may not be true reflections of
the actual length of dependence because the table shows
that the two chains were relatrively much shorter than
those of the three other activitics.

The z values (z = ‘/2X2 - V23f-1; sce footnote of
Tablce 2)for v = 2 for the 30 teachers range from 3.7%H
to 22.67, while thosc for r = 1 range from 77.4% to 130.23.
Hence, a onc-dependent chain was still a bad fit and zero
dependence should definitcly not be considered at all.
Thc marked decrcease in z from the assumption of onu~
dcpendence to the essumption of two~dependence, may indi-:

v
cate that had it been possible to test the chain for # = 3

11
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TABLE 2
TEST OF ORDLR OF MARKOTIT CHAIN ON 30 TEACHERS

Teacher Length of Chain 2 a

No. (No. of Tallies) r X df 2
5 00 6019 2 1415.11 810 12.96
1 5986.71 81 96.73
08 8388 2 1618.01 810 16.65
1 10213.53 81 130.23
12 6265 2 1516.75 810 14.84
1 6085.61 81 97.63
.13 5781 2 1306.63 810 10.88
- 1 7162.28 81 107.00
15 7080 2 1476.84 810 14,11
1 7618.80 81 110.75
19 6858 2 945,10 810 3.24
1 8413.77 81 117.03
24 8117 2 1826.22 810 20,20
1 8042,57 81 114.14
26 6323 2 1339,10 810 11.51
1 5814,53 81 95,15
27 6557 2 1613.09 810 16.56
1 5733.54 81 94.40
28 8360 2 1718.08 810 18.38
1 9398.20 81 124.41
30 7886 2 1239.17 810 9.55
1 7478.43 81 109,61
34 6339 2 1972.84 810 22.58
1 4639.90 81 83.64
37 6386 "2 1567.70 810 15.76
1 4070.33 81 77.54
40 . 7216 2 1565.61 810 15.72
1 6492.02 81 101.26
42 6175 2 1538.02 810 15.23
1 5854.98 81 95,52

12
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TABLL 2-- Continued

—— ——

Teachef Lengthiof Cﬁain 2 -a

NoO. (No. of Tallies) r X af z
48 7103 2 1298.55 810 10.72
1l 6839.02 8l 104.26
50 7233 2 1403.73 810 12.75
1 5958.53 8l 96.48
51 8884 2 1593.88 810 16,22
1 9294.03 81 123.65
53 7462 2 1129.70 810 7,30
1 5140.46 81 88,70
54 7903 2 1734.55 810 18.66
1l 6315.20 81 99,70
64 6544 2 1279.30 810 10.35
1 6478.09 81 101.14
72 6831 2 1748.34 810 18.90
1l 6725.48 81 103,30
73 6086 2 1313.20 810 11.01
1 4216.91 81l 79.15
75 5586 2 1104.47 810 6.76
1 6557.90 81 101).84
77 7201 2 1376.54 810 12,23
. 1l 5510.03 81 92,29
80 9075 2 1978.74 810 22.67
1l 7030.50 81 105,89
84 6639 2 1454.74 810 13,70
1 7932.27 81 113.27
89 6789 2 1483.50 810 14.23
1l 7829.44 81 112.45
91 5749 2 1391.83 810 12.52
1 5068.90 8l 88.00
95 6339 2 1698.90 810  18.05
1l 4870.74 81 86.01

8Because d.f. is large (> 70), the expression

z2 = szi - V2d £. - 1 was used as a normal dsviate with
anit variance, whercby the probability for x4 corresponds
with that of a single tail of the noraii curve.

©
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against r = 2, the 2 valucs may not have turned out to be
sigrificant, indicating that tiw best fit on the Markoff

chain assumption would b¢ the two-dependent chain model.

TABLE 3
TEST OF ORDER OF MARKOFTF CHAIN ON FIVE ACTIVITIES

- st — o o o———

Chain® Length 2
Description of Chain T X af z
Adm. routine 2398 2 703.17 810 ~2.74P
l 2606.54 81 59.51
Lang. arts 11756 2 30609.29 810 37.34

1 12507.93 81 145.48

Soc. Studies 7262 2 1882.40 810 21.12
1 7233.41 81 107.59

Mathematics 85u7 2 1487.62 810 14.31
1 7348.40 gl 108.54

Gt . Gt et~ il Bes s amparsy -anmin s e . A e e — .

Scicnee 2506 2 €86.5H4 810 -3.18
1 2971.44 8l o4 .40

b

-~

a -~ s 3 .. [3 3
The chain is across five teachers (same activity)
arawn at reandom from the 30 teachers in the study.

Pyot significant.

ERIC

Full Tt Provided by ERIC.
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A Likclihood Ratio Statistic
for the Two--Stup Model

This part of Scetion I is mainly cxpesitory.
It presents a simple application of the Likilihood Ratio
test for a Markoff chain of order two. Such a test
appears in thc literaturce on the subjeet. For example,

2

Andcerson and Goodman [8, p. 103] obtaincd a x° test of

goodness of fit, i.c¢c., & test of the hypothesis that

two samples are from the came Markoff chain of a given

ordecr.

Maximum Likcliheood (ML) Estimator of p,.
iikh

Under the two-cdependent chain model, the ML

c¢stimator of Pisx is T4, p.u430]:

15
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nll
ik
) (5)

P.., =
ijk n..
ij.

If there are t matrices to be compared, (5) is the

ML estimator of the pijk~°f each of the t matrices. Hence,

for the hth matrix, the ML estimator is

Ni4kh
Bijkn = T - (8

Rij.n

An Estimator of pijkh Under the Hypothesis
That t Matrices Are Equal

The test statistic to be developed is a test of the
hypothesis (Ho) that two or more matrices of interaction
data under the two-dependent Markoff chain model are equal.

Let pijkh be the probability derived from some known
distribution of the n{skh representing the probability for
the hth

teacher to have an observed interaction fall on

the kth category (state), given that two preceding states

are i1,j. Then

Hot Pijkl = Pijk2 = *** = Pijkee (7)

Under the assumption that the interaction data for
each teacher are generated by the same two-step Markoff
process, the hypothesis in (7) states that the transi-

tion probability is the same for each teacher.

Hence, the estimator of pijkh under HO can be equated

16
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with the Maximum lLikelihood estimator of pi,} of a two-
jk
step Markoff chain, that is,
-~ H ) - h.. .
Pijkh ( 0 Pl]k (8)

The hypcthesis HO in (7) states that the t sets

of p are the same for every combination i, j. There

ijkh
are, therefore,52 tables (v x t) of the contingency type.
Under this hvpothesis,

A

pijkh(Ho) = nijk-/nij.. . (S)

Equation (9) is an estimator for Piﬂk for any of
the t matrices under the hypothesis set up in (7).
The ratio of the Likelihood Functié%;zvaluated for the
estimator in (9) to that evaluated for the ML estimator
of pijkh in (8) is the Likelihood Ratio. If HO of
(7) is true, this Likelihood Ratic will not be signifi-
cantly different from one.

Development of the Likelihood
Ratio Statistic

The LT of Piipn is

INNeos.
iikh (10)
L o=, 0 (Pigin) ™

ijkh

Let pjiyy De the ML estimator of Pijxn» and ﬁijkh(o) be

i]
the estimator under HU' We have the following:
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n..
ﬁi'kh = Hilkh (for each h).
] ij.h
Dijk
Piskn(0) = Pijk = & (for any h).

ij..

Ly (max) L{ﬁiikh(O))

L (max) L(pijkh)
n..
n,. ijkh
LB 4kn(0))= 1 (FE) '
J ijkh Pij..
n..
. n,. ijkh
L(Biiyy) = T (aillfh) .
J ijkh "ij.n
N4k i ikh
log A = L ni.kh(log -n—-J——' - log -n——L) .
ijkn *J ij.. ij.h
-2logA=2(% n,., logn,.., - I
ijkh ijkh ijkh i3kh
= L MR 109 Dygp IRy

The last three summations of equation (17) are

I n,. log n, . = I n,. log n,.
ijkh ijkh ij.h ijh ij.h ij.h
L n log n, . = L n,. log n,.

and

leg n,

(11)

(12)

(13)

(14)

(15)

(16)

Biskn 199 Pi5.n

ij..

(17)

(18)

(19)
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( 20)

log n,

I Dispp ogngy = I i3..

ijkh iy I

the dot taking the place of the summation sign.

Substituting (18), (19), and (20) in (17),
we have

-2logA=2(Z% n,., logn,.,,. - I n,.. logn,.
ijkh ijkh ijkh ijh ij.h ij.h

- X nijk. log n‘jk. + I n,

. log n,
ijk £ ij lJoo

1j..)

( 21)

Eq. ( 21) is the LR test criterion of difference
among t matrices, on the assumption of a Markoff chain of
order two. Each matrix is identified by the h subscript,
h=11...,t, and nijkh denotes the frequency of the seguence

x(n-2'r)

x(0=1) x(0) - k, for teacher h. The dot

=il "jl

means that summation has been carried out over the replaced

subscript, so that

i5.h Ty Pijkn’ Pijk.T P Pigkne  and ngy = o Pijkn’
It has been shown in literature that -2 log A (3.37)

2

is distributed asymptotically as x“, on sz(s—l)(t-l)

degrees of freedom.

40
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Section IX

Analysis of One-Dependent (Intcraction) Chains

‘he Problem of Compering Two
Interaction Scaquencces

When interaction data are displaved in a 10 x 10
matrix form, the underlying assumption is that these data
were generated by a Markoff chain of order one. In order
to test the equality of two interaction analysis sequences,
one computes Derwin's LRPC (Ea. (1) ),

2[ankl log Ny - an.l log ns ank. log nsy,

+ In. log n. 1 ,
Joo Jeo

which has a Chi Square distribution for a large n. Then
using the Chi Sguarc table, he determines the statistical
significance of the diffcerence between the two sets of data.

The results of past studies, however, have shown that
the test is so scnsitive that small differcnces betwecen two
interaction seqguences yield a significant Chi Squarc. Hence,
to interproet the results of the test from an educational
viewpoint-~that is, to scc whether the statistical signi-
ficance has anv prectical meaning in education--one necds
to find out how often the test rejects the null hypothesis
of c¢quality when it is assumed that N pairs of secquences to
which Darwin's LRC is applied are generated by a pair of
Markoff chain models with known transition probabilities and
when it is assumced that the transition probabilities indicate
that the sequenceg in the pair are educationally homogencous.

The proportion of the times the test would reject



-
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the null hypothesis of equality would be an approximate
mcasure of the chance of being right, in the statistical
sense, in inferring that the two interaction sequences
are different from cach othcer. Since Darwin's test is
very powerful, it is possible thet all Chi Squarc tests
would rciject HO, i.c., the power of the test equals onc.
Therefore, one would quite frequently make o statistical
infercnce that the two sets of data, of the type speci-
fied, are significantly differcent. However, since the two
sample sequences were generated from two cducationally
homogencous matrices, most of the time our infercnce is
wrong in the educational sense. Hence, the interpreta-
tion of the statistical significance of Darwin's LRC can
be very mislcading, especially if one has to make an
inference from such a test that one type of teacher be-
havior is more effcetive in producing certain educational
outcomes than is another. One way to estimate the power
of the test would be to study an cmpirical distribution
of N Chi Squares and sce how cach Chi Square value is
associated with an estimated probability of occurrence.
In this way, one may evaluatc a computed Chi Square in
terms of the porticular distribution.

In this scction, (1) an estimate of the power of
Darwin's critcrion will be obtained and (2) a cumulative

probability distribution of the Chi Square values from

- o0
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pairs of sequences gencrated from twe educationally

homogeneous scquences threough computer simulation.

The LRC and the Length of Scquence

When two interaction sequences are compared, on
estimate of the power of Darwin's test is not the only
problem to arise. A secondary problem is an approximation
of what happens to the¢ LRC as the length of the sequencc
(number of tallies) incrcases. It can be observed that
the size of LRC inercases with an increase in the number
of tallics. The inercase in the size of the LRC, in this
example, docs not relate to tle degroes of freedom which,
in turn, do not depend on the length of the chain (or
number of tallies) but on the numbcr of categorics (s = 10)
and the number of scquences being comparcd-~in this problem,
two scquences. The degrees of freedom remain constant for
a given catecgory syctem and for o specified number of
scquences to be compered. This mecans that one factor
influcnecing the outecome of an LRC test is the lengtlh of

the invercetion scoucnces chescn for the comparison.

Computcr Simulation

The ChOiCL of Hl: (ijl) # (ij2)¢ The pair‘ of

parcntheses indicates that ijl and ij2 are ratrices of

trancition probabilities. For convenience, “he rescarcher
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L]

deviated slightly from the subscript notation used in the

Section I and shifted to Darwin's.

In terms of oducationnsl significance, two intceraction

scquences, displhved in matrix form as (n

e

£

are said to be educationally homegencous if the two class-

room situations which they represcnt have the same educo-

tional outcomcs on the basis of an outside criterion, ¢.£. .

achicvement or ottitude. Here, homogeneity refers to edu-
cational outcomc end is to be distinguished from equal tran-
sition probabilitics. To ebtain a pair of unequal siquencu:
for Hy, two identical scquences may be made to vary a. little
by slightly changing the frequency in one cell (or the
frequencics in a few cells) of the matrix. One would
judge, without furthcr teste, that the two sets of class-
room interaction which the two matrices represent were
extremely homogencous. Onc could continue modifying cell
frcquencies ond still producce two educationally homogene-
ous secquenccs. For the results of this study to be meen-
ingful, one should choose 2 pair which would satisfy the
criterion of buing ropresentative of a real situation,
one where two tcachers arce producing the same educational
outcomes through similar classroom situations.

The first cucstion this scetion attempts to answer
is: low suncitive is Daruin's test to diffcercenecs betwcen
two classroom interaction scequences? That is, how often
dous Darwin's test tend to rejeet the hypothesis that two

sequences are cqual when it dis known that they arc

Chay
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homegencous in terms of educational outcomes?

The answer to these questions can be approximited
py choesing a pair of scguunces with optimum incguality.
That ig, the two scquences should reprcesent o peir of
realistic elascroom situations which are judged to b
cducationally homogencous. These two sequences would be
made o generatce pairs of sequences to be tcested for
cquality by Darwin's LRC, and the percentage of rejection
would be obscrved. This percentag- is the proportion of

times onc would make a "Type I crror" in the educational

- -

scnses that is, the proportion of times onc would reject
the hypothesis of educational homogenwity when it du truc.
In connection with the probklem of choosing Hl’ +wo

ideasg should be reealled: (1) the underlying objeetive

in this =zvetion was to find ~ way of interpreting =ny
statistical szipnificance in the 1ight of cducaticnal
significance: (2) the problem in tosting differences be-
tuoen two intcraction date scts was the high sensitivity
of the LRC (astatigtically significant differcnces @ o~
sultcd from the test, even though the two secquences being
tested wore knowin to boe practically the same).

The author created two composite matrices that
wape based on typical transition probabilitics, and
in addition. rupresented homoguncocus outcomes. If
poirs of interaction sequences were generated from this

pair, onc would sct & distribution of Chi Square v~lucs

and could sce how often the hypothesis of equality would

Q | 2(1
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be rejeetad.

Criteris for selecetion. -The following statements

summarize the eriteria for choosing the pair of seguences
for the alternative hypothcsis:

1. The two seauencss have no significantly differ-
cnt cducational outcomece.

2. Thce propertions in the cells of the matrices
represent some identifinble target population. To achieve
these proportions, the rescarcher used actual data, instead
of determining the extent of homogeneity by subjective
judgment.

3. The lecngth of ecch sequence is realistic.
Normally, 30 minutes to two hours of classroom obscrva-
tion were made in projecets involving interaction anclysis.

Scource of data for the alternative hypothesis.

Flandcrs [5] obscrved 16 eighth-grade mathematics classes,
The te~chers 2ll taught the same two-weck unit of study,
the materials of instruetion being kept constont. Teacher
influcnee was controlled by meaesuring the spontaneous
potterns of tenchers, while the adjustea final achicvement
scorcs of the students was an outcome variable. By
"sdjusted final achievement scores" is mcant the scores

which teook into account the initial obility of the students.

Steps in the Computcer Cimulation.

The following is :n outline of the steps in gencrating

oS
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pairs of sequences and obtaining a probability distribu-
tion of Darwin's LRC.

l. The 16 eighth-grade mathematics teachers were
first ranked according to the adjusted post-test score.
Then the odd-numbered teachers in the list formed one
group, and the rest formed the other group. Table 5.1
shows these two groups, with their adjusted post-test
scores. The result was a nonsignificant difference
between the mean achievement scores of the two groups.

TABLE 4

TWO GROUPS OF 16 EIGHTH GRADE MATHEMATICS TEACHERS,
HOMOGENEOUS ON ACHIEVEMENT

Group I *  Group 1I
Achievement Achie&ement
Code No. Score Code No. Score
v8o4 34.1 | C801 - 30.7
P805 30.2 ' D804 29.8
V803 29.1 M802 28.9
A802 27.9 M805 27.3
I801 27.1 T802 26.5
H802 26.3 A803 26.2
E802 24.7 G802 24.1
L803 23.6 _ G801 21.3
Means 27,9 26.9

2. The matrices of the teachers in each group were

then combined to form two composite matrices of the pair--

Full Tt Provided by ERIC.

ERIC S
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one composite matrix for wech group. The use of several
matricts combined, rathcr than selecting a single matrix
of a short scoucnce., would meke the composite matrix morc
represcntative of a group of similar classroom situations.
In other words, the ML estimates in a composite matrix
approximate the averages of the seporate ML estimates

in the component single matrices.

3. From the two composite matrices, the ML

estimatc of Pyk) Was computed. The ML estimate

of ijl is
k1
pjkl = = s Jek = 1,...,10, 1 = 1,2. (22)
5.1

The estimates p.,, and Pypp are given in Table 5.

't can bt obsurved that the corrcesponding transi-
tion probabilities of the two matrices (A) and (B)

are not very different.

4, Cumulative transition probabilities were
computed from the ML cstimates. These are shown

in Tables € and 7.

5. From the cumuletive probabilities obtained in
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TABLE 5

MAXIMUM LIKELIHOOD ESTIMATES (TIMES 1000) OF TRANSITION
PROBABILITIES Pik FOR THE TWO SEQUENCES A AND B
OF THE ALTERNATIVE HYPOTHESIS

? :\\\i\ 1 2 3 4 5 6 7 8 9 10
| 1A 097 001 020 157 373 078 039 039 059 137
B 077 015 023 101 628 001 078 001 031 047
2 A 002 046 081 167 262 095 002 015 100 229
B 003 122 143 162 281 027 016 014 097 135
3 A 002 036 3024 155 304 030 007 042 073 049
B 003 023 323 214 249 015 007 027 075 064
4 A 002 004 003 155 051 024 008 635 031 086
B 001 003 004 141 040 017 004 663 064 064
5 A 001 003 003 083 797 038 013 006 027 028
B 001 002 003 103 787 025 008 003 039 027
' 6 A 001 002 001 048 122 323 022 219 057 205
- B 001 001 002 060 122 296 047 170 084 218
7 A 001 003 002 092 206 065 388 033 047 163
B 001 005 005 066 109 101 388 024 092 208
8 A 001 045 112 139 239 068 031 313 028 024
B 002 048 214 235 208 065 015 153 027 034
9 A 002 041 165 071 247 085 045 007 278 058
B 004 032 192 075 224 064 036 002 315 055
10 A 002 011 003 074 113 098 035 033 090 542
B 001 006 005 070 099 078 058 017 1111 555

x

Full Tt Provided by ERIC.
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TABLE 6

CUMULATIVE PROBABILITIES (TIMES 1000)
FOR SEQUENCE A

097 098 118 275 647 725 765 804 863 1000
002 048 129 2%6 558 653 655 670 771 1000
002 037 341 496 799 829 836 878 951 1000
002 006 009 164 215 239 247 882 914 1000
001 005 008 091 888 926 939 945 972 1000
001 003 004 052 174 497 518 738 795 1000
001 004 006 098 304 368 757 790 837 1000
001 046 158 297 536 605 635 948 976 1000
002 043 209 280 ‘526 612 657 663 942 1000
002 012 015 089 202 300 335 368 458 1000

O W SN U W N

=
o

TABLE 7

CUMULATIVE PROBABILITIES (TIMES 1000)
' FOR SEQUENCE B

1 2 3 4 5 6 7 8 9 10

077 091 114 215 843 844 921 922 953 1000
003 124 268 430 711 738 754 768 865 1000
003 026 348 562 811 826 834 861 936 1000
001 004 008 150 189 206 210 873 936 1000
001 004 007 110 898 922 931 934 973 1000
001 002 003 063 185 482 529 698 782 1000
001 006 011 077 186 287 675 700 792 1000
002 050 263 499 707 772 787 940 966 1000
004 036 228 304 528 592 628 630 945 1000
001 007 012 081 181 259 317 334 445 1000

O o N U e W

(Y
o

|
\

~ERIC
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stcp four, 500 pairs of scoucnces were generated. At

he same time, the LRC =nd its standard deviate z werc

+

o

computud for cach generated pair. The procedure for
simulation is simply starting a chain with the category
on silcnece, 10. A random number with uniform distribu-
tion over the range 0.00C to 1.000 is generated, and

the column catcgory in row ten, with & probebility
greater than or cauel to thisg random number, determines
the next catcegory, j. Thus, nlO,j is incremented by
one, i.c., 2 tally is made in the (10,3j) cell. This

new category determines the next row, i (equal to the
preccding j). A random number is again obtainea to deter-
minc the category (j) entry in this row. This cycle
continues until the desired length of the sequence is
reached. Tor cach pair generated, the LRC and z valucs
were computed. The 500 pairs generatced produced 500 LRC

ond z values.

5. The 500 LRC vaoluus were then ranked from small-
¢8t to largest in order to locate cvery fifth percentile

for purposes of analysis.

7. 8ince the LRC is scnsitive to the lengths of the
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scquence s in the pair, data were also gencrated for diffoer-~
cat scogucnee lensths. In this step, only 20 pairs were
generated for cach length. The lengths tried were 500,
1000, 2000, and 6000 tnllics, in addition to the lingth-of
4000 which had been used in generating the 500 pairs.

8. The 20 LPC values in cach get were then ranked
from the smallest to largest to identifyv the percontile

value for coch LRC value.

Results and Discussion

Poirs of Scquences of Lensth 4000. Table 8 is =

cumulative distribution of the 500 valucs of Darwin's

LRC computed from the 500 pairs of sequences genercted
from the two compesite matrpices in step two of the pre-
ceding subsectidar:. The lowest z valuce in the gencra-
tion is 2.622, which is s5till statistically significant
(p < 0.01). Hence, if the sample peir being tested is
the same tvpe ¢s the original pair--cighth-grade aata,

homogcncous on ochicevement, etc.--in most (or all) cascs,

)

]

one would wronely infer (wrong in the cducational sens
+that the two scguences in the pair are not equal, i.¢.,
not cducationslly homogeneous.

It has now been demonstrated that, using two cduca-
tionallyvy homogoncous scquencas, Darwin's test is so power-~
ful thet thc power is equal to onc. TFor such time as
researchers continuc to use this test, the investigator

suggests reducing the probebility of the Type I error

31
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TABLE 8

EMPIRICAL CUMULATIVE DISTRIBUTIONa OF DARWIN'S
LIKELIHOOD RATIO CRITERION AND
ITS STANDARD DEVIATE 2

Generation

Pair No. LRCO 20 P(z > zo’
R h

304 164.625 4.755 .95
122 172.445 5.181 .90
23 179.937 5.580 .85
291 183.641 5.775 .80
118 187.742 5,987 .15
14 192.312 6,222 .70
436 195.266 6.372 .65
326 199,102 6.565 .60
461 201.586 6.689 .55
359 204.281 6.823 .50
114 206.391 6.927 .45
378 209.930 7.100 .40
- 482 212.977 7.249 .35
197 217.008 7.443 .30
130 222.016 7.682 .25
266 225.617 7.852 .20
271 230.859 8.098 .15
221 235.672 8.320 .10
131 247.414 8,855 .05
240 250,445 8,991 .04
223 253,344 9.120 .03
488 257.172 9,289 .02
8 261. 375 9.474 .01
104 274.680 10.048 .00

Brhe length of a sequence in the 500 pairs
of sequences generated, is 4000 tallies.

~ERIC

Full Tt Provided by ERIC.
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in ordcr not to reject a large number of hypothescs which,
though statistically false, are educationally ‘ttrue. In
othcr words, the cutoff point in the range of LRC valucs
should b¢ much greater than those valucs at the usual
levels of signifiecance, i.e., greater than the Chi Squarc
valucs at (05, or .01, op .001. In coffcet, onu reduces

the power of the test cven as faor as .05,

Thus, from Tobic 8, under the given altcernative

hypothcsis,

plz > 8.855) = .05, (23)
That is, if the cutoff point is set at z = 8.855, the
power is reduccd to approximately .05. The value .05 in
the table represents the fifth percentile, or the proba-

bility of rejecting the hypothesis of equality under the

given alternative hypothesis. This probability is the

empirical power of the test, at z = 8.855, under the

alternative hypothesis given by the transition probabili-

tiecs in Tcoble 5.

In contrast, the table of the normal probability
intepral--single tail probability [#8]--gives
p(z > 4,39) = 0.30190(10-6). (24)
The ebove eguetion is based on the theoretical distribution

of z undcr the hypothesis of equality of the two sequencces.

Eenee, in the statisticnl sense, chcosing z = 8.855 as the
boundary of thc critieal region reduccs to near-zero the
level of significance o, or the probability of a Tyne I

crror.

33
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In summary, the cutoff point of z in rejecting
cquality can be given by a normal distribution table, but

the cutoff point for rejecting educational homogeneity E

would bc suzgested by a table such as Table 8.

[P}

Figure 1 is a graph of the cumulative empirical

ol xe

distribution of z obtained from Table §. Under the
alternative hypothesis of educational homogeneity given

by Table 5, the probobkility of a z value smaller than

10 is near one. The application of tha empirical dis-
tribution of LRC valucus obtained at this stage would be
limited, considering tinc number of assumptions to be met--
such assumptions as length of scgucnce, type of class-
room, grade lcvel, subject taught, and educational
criterion. However, thce values in Table 8 would casily
suggest the masnitude of the LRC which one might sct as
the boundarv of the critical region. For purposes of
illustration, suppos. these assumptions were met by two
sequences whosc difference was being tested for signifi-
cance. Suppose, the LRC obtained were 8.33. While a
normal probability table indicates this value to be highly
significant with o practically zero, Table 8 indicates
that rejecting the hypothesis at this point lcaves a high
probability that the sequences are homogeneous from an
cducational standpoint.

Pairs of Scauences of Varying Lengths. Table 9 shows

the ranked values of ILRC end z computed from gencrated pairs

of varying lengthe--20 pairs to each given length. TFor any

34
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plz < z,)
1.00¢

.90
.80 ¢
« 70 4
.60}
«50 4
.40 ¢
.30 4
.20 ¢

.10 ¢}

Fig. 1 --Cumulative empirical distribution of Darwin's
Likelihood Ratio criterion computed from 500 pairs of
sequences, generated from a pair of interaction sequences.*

*Length of cach sequence = 4000 tallices.

a5

A |



B oW

e

JO SaIvwtiss uasardorx vwsos
219M sited (7 90uTs,,

*yibust uaaTbh yYoes 1031 ‘SATI JO STPAIDIUT UT sa1Tiuddzad ayy
senTeA pajuer (g a9yl ‘souanbas jo yibuoj yoes 101 poilerasuab

35

[
00 6T1°¢T C¢1°LZE Lv°6 (E°T9C 96°¢ 8% 6l1 9¢ ° ¢ LT 0PT i6°0 L2°C0T 0¢
S0 C9°TIT SL°CT¢ LT°6 ¢C¥ ¥SC 86°% GL°89T 08°¢ C0°TET 08°0 L7001 61
01° €6°6 88°1¢L2 9¢€°8 6G°9¢¢C €S°vy 69°097 06°T 26971 08°0 29°00T 8T
¢1° 98-6 8t°0L2 I11°8 T11°1¢¢ 81°% 62°%GT €L°T LZ°FTT £€9°0 LZ°86 LT
0z v8°6 6L°69C SetL veUele S6°¢ GE£°0GT 19°71 A2 A RS 11°0 80°16 91
GZ- L6 00°L9C bL-L 91°¢ece P8¢ b BYPT 9¢ -1 Gr-801 T0°0 08°68 GT
o¢ - 0L°6 £€9°89Z 6v°L 68°LTC 8L°E £€°L¥T ST1°1 96°601 L0*0- L9°88 A8
Sg- ¢S°6 08°C9c 90°L TT°60C 91°¢ TO0°LVT 86°0 0€° €0t LT°0- T%°LS8 £T
0% - Yg°6 ¢9°09¢ S8°9 ¥vL-vOC 96°¢€ 99°¢wT £€6°0 €9°20T7 L1°0- T¥P-LB ¢l
c%H- 82'6 [8°9G2 Pr°9 66°20¢ 06°¢ 2Z29°2%»T 88°-0 6L-T01 6T°0- 9T1°!8 TT
0s* ¥Z¢*'6 ¢1°9s¢ £€9°9 ¥€£°002 96°¢ -59°¢f1 S8°0 P70 090~ ©¥E£°%8 01
cG* 81°6 &L°¥SC ZZ¢°9 1g£°Z6t 88-2 6f°C¢T 08°0 Z.°00T Ly*0- 6%°¢8 6
09° LT1°6 06°%S2 609 78°68T €8¢ 79°TET £G6°0 Pv°L6 £€9°0- L?°18 8 7
c9- 60°6 <¢£9°7S¢ 80°9 097687 £€9°¢ 8£°R7T1 £G°0 68°96 6L°0- O0¥%°6! L &
0¢* 66°8 05°0S¢ L6°G 8¥°L8T 19°¢ 76°L(771 06°0 0S°96 [8°0~ 6£°8L 9
cL’ {8°8 SL L%? $9°G GE°TRT 8G*Z 6S°!71 L?°0 S0°96 T6°0- GS8°1¢ S
08" 8%¥"8 <¢1°6fcC G9°¢ Q0C° 18T 01°C #6°671 9%°0 88°6G6 T0°1~ €£9°9¢ 4
g’ ¢0°8 ¢&Z’6CC €9°G 98°081 68°1T ¥7.°9:T Z22°0 8c°¢C6 ¥1°7T- B6°%¢ £
06° 68°L -L€£°92¢ 9%°GS I9°1L1 6T°T €£°90T 02-0 £€€°26 2T~ 6L°EL Z
S6° ¢1°9 6Z°0e61 60°S ¥L°0LT 0S°0 €5°96 8T7°0- T1TZ-L8 69°T- T¥v°89 1
A 41 Z 924 § Z 9>. 451 Z T Z 31
2T T3 “ON
—uss>18g 0009 000% 000¢ 000T 0o0s yuey
yibuog aousanbsag

JONINOIS JIALVEANTD JO HIONIT X9
SAONINOIS JO0 SYIVd 02 WOMJI GILNJWOD Z ANV O¥7T JO SINTYA AdTINVA

6 J1dYL




26
given percentile rank, the incrcasing values of LRC for
inercasing lengths can be noted. Thus, a z of 4.88 would
have a significant meaning in cducation if the number of
tallics in cack nemboer of the pair is ncar 2000, but not if
the¢ number is necar 4000, which requires 2 2z of 9.17 for th.o

difference to hove any significance in cducation.

A Comparison of the Empirical Distribution of Darwin's

2

LRC with thc ¥° Diatribution. A x2 table gives values at

90 degrees of freedom at certain percentile points. These
2
& . .

X" values are posted in the first column of Table 10. The

last column gives the percentile points available from a

2 - . .
X" table. The remaining columns give the corresponding

LRC values obtained from the gencrated sequences of lengthes
varying from 500 to 6000. The table shows that the
scquence length of 500 hirs LRC values closest to the tabu-
lated X2 valucs, with discrepancies widening as the eriti-
cal region (probability of a greater value) decrcases.
Howecver, since the LRC for length 500 is close to but does
not significantly oexcced xz, the talbulated values of x2
could provide a sefe guideline for educational inference
for scauences of 500 tallies to cach member of a pair.

This statement is particularly true if the major concern is
to minimize the chances of making a Type I error, that is,
when one desircs a greater margin of safety in being right
in rejceeting cquality.

When these values were plotted on the graph (Figurc 2)

£

oo .
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TASLE 12

A COMPARISON OF THE CUMULATIVE DISTRIBUTION OF x290 FROM A

CHI SQUARE TARLE AND THE EMPIRICAL CUMULATIVE
DISTRIBUTION OF DARWIN'S LRC COMPUTLD
FROM DIFFERENT SEQUENCE LENGTHS

Darwin's LRC Probability
x290 of a
Greater
(Tablo) Length Length Length Length  Length N
= 500 = 1000 = 2000 = 4000 = opog Value
69.13 68.41 87.21 96.53 16u.,63 190.25 .95
73.29 73.79 92.33 106.33 172.45 226.37 .90
80.62 77 .85 96.05 127.59 187.74 247.75 7o
89.33 gu.34% 101.41 133.65 204.28 256.12 .50

267.00 e 23
271.88 .10
312.75 .05
327.12% .01

98.¢6H 89.80 108.75 1u8.43 222.02
107.56 100.62 116.92 160.55 235.67
113.14 100.74 131.02 168.75 2u7.4l
1248.12 102.27% 1u40.27* 175.48% 261.38

#*Values at .00 percentile in Table 9

under the given percentile points, it became obvious that
those obtained from lensths of 4000 haed 2 more stable ro-
lationship with the x2 distribution. Thc¢ line of the plotted
points is almost a straight linc. The values for the extreme
lengths of 500 and 60600 are the most crratic, while those for
lengths of 2000 end 1000 have only one and two points, ro-

spectively (out of cight percentile points), which deviate

from a line~r trond.

2R



Implication and Possible Extension
of thic Projcct

By an cmpirical procedure, the author obtained
the power of Darwin's LRC at one point in the sct of all
possible alternative hypotheses. Pairs of sequences were
generated from only one pailr of scquences. If this pro-
cedure were to be replicated for other pairs of sequences
under diffcrent alternative hypotheses and for the same
lengths, boundary points corrcsponding to the differcnt
alternative hypotheses would be obtained. Such replica-
tion would give more information on the range of the
boundary points.

It should be recalled that the transition proba-
bilities on which the simulation was bosed were calculated
from a sct of 16 interaction matrices of cighth-grade
mathematics classes, split into two subsets of classcs
having no significant diffcronce in the achievement means.
If conditions such as grade level, subject taught, and
educational critcerion are varicd from one alternative
hypothesis to another, the simulation would produce
approximate LRC and z valucs which would serve as cutoff
points for tests on data sets which have conditionsg simi-
lar to thosc characterizing the basic data sets in the
simulation procecss.

However, cven without the replications suggested

here, the distribution of LRC and z values generated

[
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from onc alternative hypothesis can give the interaction
analyst a fair idea of thc magnitude of the LRC and z
valucs in comparison with the tabulated theorctical dis-
tribution of Chi Sguare. A uscr may not neccssarily use
the values presented in this paper, but, having some wm-
pirical valucs to comparce his own results with, hoe may
find in them some basis for his interprcetation of the

sienificant results of Derwin's LRC.

TABLE 11

SUGGESTED BOUNDARY POINTS FOR LRC AND z, BASED
ON VALUES AT THE 95th AND 96th PERCENTILES
OF THEIR LDMPIRICAL DISTRIEUTIONS FOR
DIFFERENT SEQUENCE LENGTHS

95th Percaontile 99th Percentilc

Length of N

Scquoence
LRC z LRC ot

500 1CC.74 0.80 102.27 0.91
1009 131.02 2.80 140.27 3.36
2000 168.75 4L.98 179.48 5.56
4000 247.41 9.17 261.38 g.u7
6000 212.75 11.62 327.12 12.19

Thus, the critical values of LRC and z were taken from
Table 10 and prescnted in Taple 11 as the suggested boundary
points (at the 95th and 99th percentiles of their distributions)
for the rciection of the hypothesis., It is left to the reader to
use his insight and cxpericnce with his data to judge whether
these values are relevant to his own research.
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